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Orientation Tuning of Correlated Activity in the Developing
Lateral Geniculate Nucleus

Caitlin W. Kiley and “W. Martin Usrey

Center for Neuroscience, University of California, Davis, California 95618

Neural circuits and the cells that comprise them undergo developmental changes in the spatial organization of their connections and in
their temporal response properties. Within the lateral geniculate nucleus (LGN) of the dorsal thalamus, these changes have pronounced
effects on the spatiotemporal receptive fields (STRFs) of neurons. An open and unresolved question is how STRF maturation affects
stimulus-evoked correlated activity between pairs of LGN neurons during development. This is an important question to answer because
stimulus-evoked correlated activity likely plays a role in establishing the specificity of thalamocortical connectivity and the receptive
fields (RFs) of postsynaptic cortical neurons. Using multielectrode recording methods and white noise stimuli, we recorded neural
activity from ensembles of LGN neurons in cats across early development. As expected, there was a progressive maturation of the
spatial and temporal properties of visual responses. Using drifting bar stimuli and cross-correlation analysis, we also determined
the orientation-tuning bandwidth of correlated activity between pairs of LGN neurons at different stages of development (Sillito
and Jones, 2002; Andolina et al., 2007; Stanley et al., 2012; Kelly et al., 2014). Despite the larger RFs and slower responses of
immature LGN neurons compared with mature neurons, our results show that correlated activity in the LGN was as tightly tuned
for orientation early in development as it was in the adult. Closer examination revealed this age-invariant orientation tuning of
correlated activity likely involves cellular mechanisms related to spike fatigue in young animals and a progressive decrease in
response latency with development.
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Orientation tuning is a fundamental property of neurons in primary visual cortex. An important and unresolved question is
how orientation tuning emerges during brain development. This study explores a potential mechanism for the establishment of
orientation tuning based on correlated activity patterns among ensembles of maturing neurons in the lateral geniculate nucleus
(LGN) of the thalamus. Results show that correlated activity between pairs of LGN neurons is more tightly tuned than predictions
based simply on receptive field size, indicating that correlated activity has the properties needed to play an important role in the
development of geniculocortical circuits and the emergence of cortical orientation tuning. j

ignificance Statement

Introduction

Correlated activity among neuronal ensembles is known to play a
vital role in guiding the specificity and maturation of neuronal
circuits. In the visual system, correlated activity can occur inde-
pendently of visual stimulation, as in the case of retinal waves that
emerge before photoreceptor maturation (Meister et al., 1991;
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Wongetal., 1993; Feller et al., 1997) and in a stimulus-dependent
manner, as demonstrated in studies in which eye alignment was
altered during the critical period to disrupt interocular correlated
activity and typical circuit formation (Hubel and Wiesel, 1965;
Hirsch and Spinelli, 1970; Chino et al., 1983; Antonini and Stryker,
1993; White et al., 2001; Hooks and Chen, 2006; Munz et al., 2014).
During normal development of the visual system, two factors are
predicted to influence the strength and timing of stimulus-depen-
dent correlated activity: the size of neuronal receptive fields (RFs)
and the time course of visual responses.

In the lateral geniculate nucleus (LGN) of the dorsal thalamus,
neuronal RFs undergo a dramatic reduction in size during devel-
opment (Daniels et al., 1978; Cai et al., 1997; Tavazoie and Reid,
2000; Tao and Poo, 2005; Koehler et al., 2011), a process largely
reflecting a decrease in the number of retinal ganglion cells pro-
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viding convergent input onto target genicu-
late neurons (Chen and Regehr, 2000;
Jaubert-Miazza et al., 2005). The visual
responses of geniculate neurons also be-
come faster and more robust with devel-
opment due in part to the myelination of
retinal axons (Elgeti et al., 1976; Moore et
al., 1976) and changes in the biophysical
membrane properties of maturing neu-
rons (Monyer et al., 1994; Dunah et al.,
1996; Wenzel et al., 1996; Ramoa and
Prusky, 1997; Kirson et al., 1999; Misra et
al., 2000; Liu and Chen, 2008). Here, we
explore the relative maturation of the spa-
tial and temporal properties of visual re-
sponses in the developing feline LGN and
test the hypothesis that spatiotemporal RF
(STRF) refinement dictates the band-
width of orientation-tuned correlated ac-
tivity among pairs of geniculate cells.
Understanding the mechanisms that un-
derlie the emergence of orientation-tuned
ensemble activity is important because
this activity is likely to contribute to the
developmental refinement of geniculocor-
tical connections (i.e., neurons that fire to-
gether, wire together) and the establishment On

of cortical orientation selectivity. cells

The larger RFs of LGN neurons in young
animals underlies the prediction that ori-
ented stimuli should coexcite pairs of
neurons over a broader range of orienta-
tions than would occur for more mature
neuronal pairs with smaller RFs (Fig. 1).
To test this prediction, we collected STRF
data from ensembles of LGN neurons at
specified ages from 10 d postnatally to
adult. With these data, we compared the
relative maturation of RF size and re-
sponse timing. We then used drifting bar
stimuli to test the hypothesis that there is a
progressive decrease (i.e., sharpening) in
the orientation-tuning bandwidth of cor-
related activity between pairs of neurons
across development.

Contrary to our hypothesis, our results demonstrate that ori-
entation tuning of correlated activity in the LGN is as tightly
tuned, if not more so, in young animals as it is in the adult. This
result is despite our findings that neuronal RFs in the developing
LGN are much larger in size than in the adult and that responses
are slower and more sluggish in immature LGN cells. Further
investigation revealed this age-invariant orientation tuning of
correlated activity likely reflects cellular mechanisms related to
spike fatigue in young animals in tandem with a progressive de-
crease in visual response latency during development. Together,
these findings provide key insight into the tight orientation
tuning of correlated activity between pairs of geniculate cells
in young cats and reveal a substrate with the properties needed
for Hebbian mechanisms to guide the development of genicu-
locortical circuits and the tight orientation tuning reported for
simple cells early in cortical development (Moore and Free-
man, 2012).

Figure 1.
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Schematic diagram showing the range of orientations in which a bar stimulus is predicted to coexcite a pair of LGN
cells withimmature (green) and mature (orange) RFs. In both examples, the circles represent the spatial extent of the RF centers of
two LGN cells (same sign). The distance between the centers of the RF centers is the same for both examples. The immature pair of
cells with larger RF centers are coexcited by a broader range of angles (6;) than the range of angles (6,) that coexcite the mature

4 weeks Adult

LGN RF center diameter decreases during development. RF maps of on- and off-center cells from 1-week-old, 4-week-
old, and adult LGN neurons. RFs were mapped using a white noise stimulus and reverse correlation analysis. On responses are
shown in red and off responses are shown in blue; pixel brightness indicates strength of response. White circles demonstrate
Gaussian fits to RF center (diameter: 4o). Scale bars, 1visual degree.

Materials and Methods

Surgery and preparation
All surgical and experimental procedures used in this study were approved
by the Institutional Animal Care and Use Committee at the University of
California—Davis and were in accordance with U.S. Department of Agricul-
ture and National Institutes of Health guidelines. The study used 22 cats (10
female, 11 male, 1 not documented) aged 10 d to adult. Anesthesia was
induced with either isoflurane (0.7-2.0%) in oxygen and nitrous oxide (2:1)
or a mixture of ketamine and xylazine (1022 mg/kg and 1 mg/kg, respec-
tively, i.m.) supplemented with ketamine as needed. A tracheotomy was
performed, and anesthesia was maintained with isoflurane (0.7-2.0%) in
oxygen and nitrous oxide (2:1). Most animals were placed in a stereotaxic
apparatus; the smallest animals were stabilized with a chin rest and head
post. Animals were artificially ventilated and monitored for temperature,
heart rate, electroencephalogram (EEG), and expired CO, throughout
the experiment. Physiological measurements indicative of a decrease in
anesthesia such as a change in heart rate, expired CO,, or EEG pattern
resulted in an increase in the concentration of isoflurane delivered.
Pupils were dilated using 1% atropine sulfate and nictitating mem-
branes were retracted with 10% phenylephrine. Flurbiprofen sodium
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(0.03%) was administered to ensure pupillary dilation. After a midline
scalp incision and a small craniotomy made above the LGN, the dura was
removed and the craniotomy was filled with agarose. To minimize eye
movements, the lateral margin of each eye was exposed and the sclera was
glued to a ring mounted on the stereotaxic frame. All wound margins
were infused with lidocaine. Eyes were fitted with contact lenses and
refracted. At the conclusion of the experiment, the animal was given a
lethal dose of Euthasol (100 mg/kg; Virbac Animal Health).

Electrophysiological recordings and visual stimuli

The LGN was located using stereotaxic coordinates from Rose and Good-
fellow (1973). Recordings were made from LGN neurons using either
single parylene-coated tungsten electrodes (AM Systems) or a seven-
channel multielectrode array with platinum-in-quartz electrodes (Thomas
Recording). Neuronal responses were amplified, filtered, and recorded to
a computer equipped with a Power 1401 data acquisition interface and
the Spike 2 software package (Cambridge Electronic Design). Spike iso-
lation was based upon waveform analysis ( parameters were established
independently for each cell) and the presence of a refractory period as
indicated in the autocorrelogram (Usrey et al., 2000, 2003).

Visual stimuli were created with a VSG2/5 or a ViSaGe visual stimulus
generator (Cambridge Research Systems) and displayed on a gamma-
calibrated CRT monitor with a mean luminance of 38 cd/m? and a re-
fresh rate of 120 or 100 Hz.

White noise stimulus. RFs were mapped using a binary white noise
stimulus consisting of a 16 X 16 grid of black and white squares. Each
square was modulated in time according to an m-sequence of length
212.1 (Reid et al., 1997).

Drifting bar stimulus. A bar stimulus was used to examine correlated
firing patterns between cell pairs. Single bars, the length of which ex-
tended the length of the monitor and the width of which was set to ~60%
of the recorded neuron’s RF center size, drifted across a mean gray back-
ground at angles ranging between 0 and 170°. We chose to use a bar width
of 60% of the RF size to ensure that there were epochs when the stimulus
would be restricted within the RFs of recorded cells and to maintain a
consistent relationship between bar width and RF sizes. The bars were
presented randomly at 10° intervals and drifted across the screen between
12 and 16°/s depending on the temporal response properties of the cells.
Each orientation was presented 30 times for a total of 540 trials (18
angles X 30 trials).

Data analysis

Reverse correlation and STRF analysis. STRF maps were generated by
applying reverse correlation analysis (Citron et al., 1981; Jones and
Palmer, 1987; Sutter, 1992; Reid et al., 1997) on the neuronal responses to
the binary white noise stimulus (described above). For each temporal
delay between stimulus and response, we calculated the average stimulus
that preceded a spike. The resulting STRF can be thought of as the aver-
age firing rate of the neuron above or below the mean for each pixel in the
stimulus (the impulse response). RF center sizes were quantified as the
degrees in visual space corresponding to four times the o (space con-
stant) of a Gaussian equation fit to the RF at the latency corresponding to
the peak response. Impulse responses were calculated by interpolating
responses to pixels overlapping the RF center using a piecewise cubic
Hermite interpolating polynomial (MATLAB function “pchip”; The
MathWorks) in which the center is defined as all contiguous spatial
positions having the same sign as the strongest response and 1.5 SDs
above the baseline noise value. From the impulse response, response
latency was quantified as the time that elapsed between stimulus onset
and the peak response. Indices used to compare RF center size and la-
tency at different developmental ages were calculated by dividing the
difference of two values by their sums (i.e., RF center size . , — RF center
SIZ€, 1t average)/ (RE center size oy o + RF center size, g1, average)- All mul-
ticomparison analyses were Bonferroni corrected and excluded statistical
outliers.

Cross-correlation analysis. To assess the relationship between stimulus
orientation and the magnitude of correlated activity between neigh-
boring geniculate neurons of the same sign (i.e., two on-center cells), we
generated cross-correlograms from responses to a drifting bar stimulus.
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Figure 3. LGN RF center diameter decreases over time and does not correlate with eccen-
tricity during development. 4, Box-and-whisker plot of LGN RF center diameter during devel-
opment. The middle line across the box marks the median, the top and bottom edges the first
and third quartile of the population, and the whiskers indicate the minimum and maximum
values. Gray X's indicate statistical outliers. Black asterisks identify ages with RF center diame-
ters significantly different from adult animals; blue asterisks identify ages with RF center diam-
eters significantly different from 1-week-old animals (p = 1.55 X 10 ~*', Kruskal-Wallis,
1week to adult: n = 45,58, 57,52, 58, 59, and 68). B, Eccentricity and RF center diameter of X
cells (R2 = 0.29,n = 44) and Y cells (R* = 0.55,n = 29) in the adult. X cells are marked with
anX, Y cells with open circles. X and Y cells were classified based on relative RF size within each
neuronal ensemble (Usrey et al., 1999). C, Eccentricity and RF center diameter of neurons at
1 week postnatally (R? = 8.8 X 10 3, linear regression, n = 45).

Cross-correlograms were generated from responses to each of the 18
angles presented during the drifting bar stimulus and spikes were binned
at 0.5 ms. Past work has shown that the spikes of an LGN neuron are
more likely to evoke a postsynaptic cortical response when they arrive
within 7 ms of a spike from another LGN neuron (Usrey et al., 2000;
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Figure 4.  Impulse responses change shape during development. A, Schematic of an LGN cell impulse response. Response latency is the time between stimulus onset and peak response.

Band ¢, Impulse responses of the cells with RF maps shown in Figure 2. Dotted line marks zero on the y-axis.

Usrey, 2002; see also Stanley et al., 2012; Kelly et al., 2014). We therefore
integrated spike counts across a *6.25 ms window of each cross-
correlogram to create an orientation-tuning curve for a pair of geniculate
neurons using the spikes most likely to drive the cortex. The tuning
curves were fit with a Gaussian equation and the half-width at half-height
(HWHH) values were extracted and used as a measure of tuning
bandwidth.

RF pairs analysis. The distance between the RFs of a cell pair was
measured from the strongest pixel of each RF at the peak of each neuron’s
response. Geniculate cell pairs with RFs farther than 5° apart were not
included in the analyses given they are highly unlikely to provide conver-
gent input onto the same cortical cell (Jin et al., 2011). Peak angle of the
cell pair tuning curve was defined as the stimulus angle that elicited the
maximum response. The spatial angle between RFs was measured with
the line used for calculating distance between the RFs.

Response duration and effective RF. Response duration for each cell was
defined as the full-width at half-height (FWHH) of the peak of the peri-
stimulus time histogram (PSTH) generated from responses to the drifting
bar stimulus. The PSTH peak was fit with an interpolating polynomial
using piecewise cubic Hermite interpolating polynomial (MATLAB
function “pchip”; The MathWorks) from which we calculated the
FWHH of the peak. Cells with PSTH peaks that could not be fit with a
polynomial were excluded from the analysis. The effective size of the RF
center to the drifting bar stimulus was calculated by multiplying the
velocity of the drifting bar to the neuron’s response duration. In addition,
we calculated where within a neuron’s RF the drifting bar was located at
the time of the cell’s first stimulus-evoked response by multiplying the
velocity of the bar stimulus by the cell’s response latency.

Results

Spatiotemporal receptive field development

We recorded the spiking activity of 397 LGN neurons in 22 cats at
ages 10 d postnatally to adult to determine how the maturation of
RFs in both space and time affects the orientation tuning of cor-
related activity among ensembles of LGN neurons. STRF maps
were generated by applying reverse correlation analysis on the
responses of neurons to a dense white noise stimulus (see Mate-
rials and Methods). Figure 2 shows representative RFs of LGN
neurons at three stages of development (1 week, 4 weeks, and adult).
In this figure, red pixels indicate regions within the RF excited by

bright stimuli (on responses) and blue pixels indicate regions excited
by dark stimuli (off responses). RF centers were fitted with a Gauss-
ian equation to quantify RF center size (diameter = 40; represented
as circles overlaid on the RF maps). For both the on-center and
off-center cells, RF size decreases with age.

Across our sample of cells, RF center size in cats 1-6 weeks
postnatally is significantly larger than in adult cats (Fig. 34; p =
1.55 X 10 ~*', Kruskal-Wallis; 1 week to adult: n = 45, 58, 57, 52,
58, 59, and 68). This finding indicates RF center size does not reach
full maturity in cat LGN cells until after 6 weeks postnatally, a finding
consistent with previous reports (Daniels et al., 1978; Cai et al., 1997;
Tavazoie and Reid, 2000). Importantly, RF center sizes at both 1 and
2 weeks postnatally are statistically different from the other time
points, indicating landmark changes in RF refinement between 2
and 3 weeks (p = 3.2 X 10 "', Wilcoxon rank-sum).

To address possible concerns that the differences in RF center
size reported here might reflect a sampling bias in eccentricity
rather than biological age, we examined RF center size with re-
spect to eccentricity. As shown in Figure 3B and consistent with
previous reports (Hoffmann et al., 1972; Wilson and Sherman,
1976; Daniels et al., 1978; Tavazoie and Reid, 2000), there is in-
deed a positive correlation between RF size and distance from
area centralis in adult cats (Fig. 3B; X cells, R?>=1029,n=45Y
cells, R* = 0.55, n = 29). However, this relationship is not present
in young animals (Fig. 3C; R* = 8.8 X 10 ~?, linear regression, 45
cells). Taken further, these results suggest the mechanisms serv-
ing to sculpt RF size during development have the greatest impact
on cells with RFs near area centralis.

The STRFs of LGN cells not only show changes in the spatial
domain with development, but also in the temporal domain.
Again using white noise stimuli and reverse correlation analysis,
we determined each cell’s temporal response profile (impulse
response). Using the impulse response, we then calculated the
latency to peak response for each cell (Fig. 4A). Impulse response
functions for the cells shown in Figure 2 are shown in Figure 4, Band
C. From these examples, it is apparent that there is a decrease in
response latency with age. Similar to the decrease in RF size shown in
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Figure5. LGN neuron response latency decreases during development. 4, Box-and-whisker
plot of LGN response latency during development (p = 6.25 X 10 ~*3, Kruskal-Wallis, 1 week
toadult: n = 42,38, 50,42, 49, 54,and 71). Gray X's indicate statistical outliers. Black asterisks
identify ages significantly different from adult population, blue asterisks identify ages signifi-
cantly different from the 1-week-old population. B, Scatter plot of RF center diameterindexand
latency index. Large circles with SE bars indicate averages for each age group. Zero marks the
average value of the adult cell population.

Figure 3A, Figure 5A shows a decrease in latency throughout the first
6 weeks of postnatal development and also between 6 weeks to adult-
hood (p = 6.25 X 10 ™%, Kruskal-Wallis, sample sizes over the
range 1 week to adult: n = 42, 38, 50, 42, 49, 54, and 71).

To gain greater insight into the relative maturity of LGN RF cen-
ter size and latency to peak response, we applied an index to compare
these cell properties across ages (see Materials and Methods). With
this index, values closer to 1.0 signify more immature cell properties
and index values closer to zero indicate more adult-like qualities.
Figure 5B shows the relationship between the relative maturity of RF
center size and peak latency. As expected, this figure shows the gen-
eral trend of index values approaching zero with age.

Correlated firing is more tightly tuned in immature than
mature LGN cells

Past work examining geniculocortical communication in adult
cats has shown that spikes produced by two LGN neurons are
more likely to evoke a postsynaptic cortical response when they
occur within 7 ms of each other (Usrey et al., 2000; Usrey, 2002;
see also Stanley etal., 2012; Kelly et al., 2014). Because this form of
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reinforcement could be used by Hebbian mechanisms to estab-
lish and/or secure connectivity patterns between LGN and cortex,
we wished to know how the orientation tuning of stimulus-
evoked correlated activity between pairs of LGN neurons changes
with development. To investigate this question, we analyzed the
correlated activity of pairs of neurons in the developing and ma-
ture LGN to drifting bar stimuli (Sillito and Jones, 2002; Ando-
lina et al., 2007, 2013; see Materials and Methods).

The process of generating orientation-tuning curves of corre-
lated activity is shown in Figure 6, A-C, for a representative pair
of LGN neurons in the adult cat. In this example, the neurons
have RFs that match in sign and are in vertical register (Fig. 6A).
Given their RF locations, it is expected that a vertical bar drifting
over their RFs would be effective at coexciting the two cells. The
cross-correlograms in Figure 6B illustrate the relationship be-
tween the cells’ activity patterns when they were stimulated with
a variety of stimulus orientations. In these correlograms, the bin
at time 0 indicates the occurrence of synchronous spikes between
the two cells and bins at positive and negative times indicate the
occurrence of spikes with a specific time interval between them.
As expected, vertical and near vertical drifting bars evoked more
spikes centered at time 0 than horizontal and near horizontal
bars. For each pair of cells in this study, we made 18 cross-
correlograms from bar stimuli that varied by 10°. Using the total
spike count within * 6.25 ms of 0 in each cross-correlogram
(indicated with dashed green lines in Fig. 6B), we constructed an
orientation-tuning curve of correlated activity for the cell pair.
The orientation-tuning curve of correlated activity shown in Fig-
ure 6C corresponds to the pair of cells illustrated in Figure 6, A
and B; the tuning curves shown in Figure 6, D-G, correspond to
representative cell pairs from recordings at ages 1-6 weeks. For
all tuning curves, we fitted the orientation-tuning curve with a
Gaussian equation to determine the orientation-tuning band-
width of correlated activity (HWHH) (Sillito and Jones, 2002;
Andolina et al., 2007, 2013).

We hypothesized that larger RF centers, and therefore younger
cells, would yield broader tuning curves because a greater number of
orientations would elicit coexcitation from these cell pairs (Fig. 1).
In addition, we expected the distance between two RFs to affect
the tuning bandwidth such that RFs closer together would also
yield broader orientation tuning. The results shown in Figure 7A
support just one of these predictions. Contrary to our first pre-
diction, orientation-tuning bandwidth during early development
is not greater than that in the adult and, if anything, is less than
that in the adult at the earliest ages examined (p < 0.006,
Bonferroni-corrected significance cutoff = 0.008, Kruskal-
Wallis). In addition, the distance between RFs does affect tuning
bandwidth (second prediction) because measures of HWHH
typically decrease as distance increases (Fig. 7A). The average
HWHH for orientation-tuning curves based on correlated activ-
ity between adult LGN cell pairs is quite similar to the HWHH
determined from the orientation-tuning curves generated from
the spiking activity of adult cortical simple cells (~18-35°)
(Sherk and Stryker, 1976; Heggelund and Albus, 1978; Freeman
and Ohzawa, 1992; Moore and Freeman, 2012; Sadagopan and
Ferster, 2012), as marked by the shaded region in Figure 7A.

To address possible concerns that the narrow tuning of corre-
lated activity in immature cell pairs is simply a result of fewer
overall spikes produced by the younger cells, we reran our anal-
yses with one-third of the trials (therefore approximately one-
third of the spikes) for cell pairs in our youngest (n = 15 cells) and
oldest age groups (n = 18 cells). For this analysis, cell pairs in the
young and adult groups were selected such that a comparably
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broad range of spike counts (young cells: A
range = 602853 spikes; adult cells: range =
102-2467 spikes) and distances between
RF centers (young pairs: 0—1°, 6 pairs; 2—3°,
4 pairs; 3—4°, 5 pairs; adult pairs: 0-1°, 4
pairs; 2-3°, 9 pairs; 3—4°, 5 pairs) were B |
represented. Figure 7B demonstrates that
this large reduction in spike count does
not alter the findings for either group
significantly (p = 0.4553 for young, p = \
0.6464 for adult, Wilcoxon rank-sum),
thus allaying concern that spike count
may have biased the results.

We next examined how well each cell
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is not greater in early development than in
mature animals, we examined each cell’s
PSTH during the drifting bar stimulus to
gain insight into temporal features of
each cell’s responses (see Materials and
Methods). As shown in Figure 94, there
was no difference in PSTH response duration across ages (p >
0.03, Bonferroni-corrected significance cutoff = 0.007, Kruskal—
Wallis; sample sizes over the range of 1 week to adult: n = 14, 26,
42,32, 30, 46, and 58).

We then used the response duration assessed from drifting bar
stimuli to recalculate each neuron’s “effective” RF center size,
meaning that we redefined the RF center size based on the region
of visual space within which the drifting bar elicited a response.
Figure 9B shows the comparison of “effective” RF sizes deter-
mined from the drifting stimulus with RF sizes determined from
the white noise stimulus. At all developmental time points before
adult, this comparison shows that “effective” RF centers based on
drifting-bar stimuli are smaller, on average, than RF centers
based on white noise maps (p < 1.13 X 10 ~°, Wilcoxon rank-
sum, 1-6 weeks: n = 14, 26, 43, 34, 30, and 46). Interestingly,
there is no difference between the two measures in adult LGN
cells (p = 0.0967, Wilcoxon rank-sum, n = 60). These results
suggest that spike fatigue to the drifting stimulus in young cells
may underlie the smaller RFs (see Discussion). Using the new
“effective” RF values, we reevaluated the relationship between RF
center size and age. Results of this analysis revealed that RF cen-
ters of young cells are not significantly different from those of
adult cells (p > 0.01, Bonferroni-corrected significance cutoff =
0.007, Kruskal-Wallis).

line shows the alignment angle of the two RFs. B, Cross-correlograms calculated from the responses of the pair of geniculate
neurons with RFs are shown in A. Responses were elicited by a drifting bar stimulus. Angle of the stimulus is depicted in the upper
left corner of each cross-correlogram. Dotted lines denote time window of spike integration used to calculate correlated activity
tuning curves. €, Orientation-tuning curve resulting from cross-correlograms in B. Green line shows raw data, dotted black line
illustrates Gaussian fit. DG, Representative tuning curves for pairs of LGN neurons at ages 1 week, 3 weeks, 5 weeks, and 6 weeks.

As a final analysis, we determined where the drifting bar was
located within a neuron’s RF when that neuron began to fire.
Using the edge of the RF center subunit as the zero mark, we
calculated the distance between the RF edge and the location of
the leading edge of the bar at the moment the neuron started
firing. We then converted this distance to the percentage across
the RF to allow us to compare values at different ages. Impor-
tantly, this analysis revealed that, regardless of age (and thus RF
size), neurons began firing when the drifting bar was ~30%
across their RF centers (Fig. 9C). This finding is consistent with
results showing a progressive decrease in response latency with
development.

Together, results from this study suggest that response latency
and response fatigue work together as LGN RFs mature to ensure
that downstream postsynaptic target neurons receive age-invariant,
orientation-tuned, correlated activity from pairs of LGN cells.

Discussion

The goal of this study was to determine the relationship between
STRF maturation and the development of orientation-tuned cor-
related activity among ensembles of LGN neurons. Surprisingly,
we discovered that immature pairs of LGN neurons are able to
provide the cortex with tight orientation-tuned correlated activ-
ity despite having large RFs and sluggish responses.
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Consistent with past results, our data demonstrate that LGN
RFs in young animals are larger than those in the adult (Daniels et
al., 1978; Cai et al., 1997; Tavazoie and Reid, 2000; Tao and Poo,
2005; Koehler et al., 2011). This finding is likely not due to poor
optics because the RFs of retinal ganglion cells in age-matched
young animals are similar in size to those in adults (Tavazoie and
Reid, 2000). Instead, RF size appears to depend on the number of
retinal ganglion cells providing convergent input to individual
LGN neurons. In support of this view, in vitro physiological in-
vestigations of retinogeniculate synapse maturation describe an
early exuberance of convergent connections that is followed by a
developmental pruning and reduction in the number of retinal
ganglion cells that provide convergent input to individual LGN
neurons (Chen and Regehr, 2000; Jaubert-Miazza et al., 2005).
Separately, anatomical studies show axonal terminal endings
resembling growth cones in cats 2 weeks postnatally, suggesting

that both axon remodeling and target finding are still occurring at
this age. By 3 weeks of age, when our data showed a large decrease
in RF size, axon terminal swellings begin to form adult-like
crenulations indicative of stabilized connections (Mason, 1982).
This trend of maturing terminal endings continues for weeks, as
does RF sculpting, both in the LGN and the visual cortex (DeAn-
gelis et al., 1993).

Along with the developmental refinement of LGN RFs that
occurs in the spatial domain, the visual responses of LGN neu-
rons also undergo a progressive maturation in the temporal do-
main. Using reverse correlation analysis and white noise stimuli,
our results show response latency decreases dramatically between
2 and 3 weeks postnatally during the period when myelination of
retinal axons reaches the LGN (Elgeti et al., 1976; Moore et al.,
1976). After this time, response latency continues to decrease, but
more gradually, coinciding in time with when the optic nerve
reaches 80% myelination (Cragg, 1975; Moore et al., 1976).

Results from this study also demonstrate that the orientation-
tuning bandwidth of correlated activity is similar for LGN cell
pairs in young and mature animals. This finding was unantici-
pated, especially in light of the larger RF centers mapped with
noise stimuli in younger neurons. However, further analysis
revealed that age-invariant orientation tuning of correlated
activity can be accounted for by interactions between the tran-
sient nature of visual responses in young neurons to drifting
bar stimuli and the longer response latencies of young neu-
rons. Through mechanisms that likely include adaptation
and/or spike fatigue (Hubel and Wiesel, 1963; Huttenlocher,
1970; Buisseret and Imbert, 1976; Daniels et al., 1978; Beck-
mann and Albus, 1982), young neurons respond more tran-
siently to drifting stimuli than mature neurons. Therefore,
young neurons respond to a drifting stimulus only when it
passes through a subsection of the RF, thereby decreasing the
effective size of the RF. This effect, coupled with a delay in the
visual response, centers the reduced, “effective” RF to the cen-
ter of the RF map determined with white noise stimuli. A
similar phenomenon has been reported for macaque area MT
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Figure 9.  Response duration alters “effective” RF center size of developing LGN neurons.
A, Scatter plot of response duration elicited by drifting bar stimulus. Response duration was
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30,46, and 58). B, Scatter plot of RF center diameter and “effective” RF center diameter during
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0.0967, Wilcoxon rank-sum, n = 60). Across all seven developmental time points, there is not
a difference in effective RF size. Open black circles represent RF center diameter calculated from
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duration toa drifting bar stimulus (see Materials and Methods). C, Plot of average stimulus
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Error bars indicate SE.
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during high-noise visual processing, although this finding ad-
dressed space only (Kumano and Uka, 2012).

Interestingly, the tuning bandwidth of correlated LGN activity
that we report for the youngest animals is significantly less than
that reported for individual cortical simple cells of similarly aged
cats (Bonds, 1979; Albus and Wolf, 1984; 1985; Freeman and
Ohzawa, 1992; Moore and Freeman, 2012; Braastad and Hegge-
lund, 1985). There are several likely reasons for the difference.
First, simple cells are known to receive input from more than two
LGN cells (Tanaka, 1983; Peters and Payne, 1993; Reid and
Alonso, 1995; Usrey et al., 2000) and, although we know little
about the spatial extent of LGN inputs to individual simple cells
in kitten cortex, it is likely that there is a relationship between the
size of the ensemble and the broader tuning bandwidth of young
simple cells. Second, synaptic delays between the LGN and cortex
normalize around 4 weeks postnatally and myelination of the
optic radiations occurs between 3 and 6 weeks (Beckmann and
Albus, 1982). Changes in these temporal properties may affect
tuning bandwidth in the cortex in ways that our data do not
capture.

We suggest that the response fatigue that we and others ob-
served in young LGN neurons (Hubel and Wiesel, 1963; Hutten-
locher, 1970; Buisseret and Imbert, 1976; Daniels et al., 1978;
Beckmann and Albus, 1982) may play an important role in circuit
development. Given that LGN neurons are not fully mature at 6
weeks, downstream cortical cells would have to wait weeks after
eye opening before spatially restricted, tightly correlated activity
could be transmitted from the LGN. Along these lines, we know
that manipulations such as lid suturing, which severely degrades
image quality and acts similarly to a low-pass filter, perturb the
development of orientation selectivity and direction selectivity in
cortex (Pettigrew, 1974; Sherk and Stryker, 1976; Chapman and
Stryker, 1993; White et al., 2001). To ensure that the pace of visual
development is not delayed by large RFs, the system appears to
compensate by limiting the duration of stimulus-evoked re-
sponses in young neurons. In this way, the RFs of young neurons
are operationally smaller and can produce precise correlated ac-
tivity nearly indistinguishable from that of adult neurons. This
strategy would serve to accelerate the maturation of orientation
selectivity, which is known to develop early, between 1 and 4
weeks postnatally in the cat (Buisseret and Imbert, 1976; Albus
and Wolf, 1984; Braastad and Heggelund, 1985; Freeman and
Ohzawa, 1992; Moore and Freeman, 2012).

Stability of orientation tuning appears to be important for
both the developing and adult brain. In the adult, the orientation-
tuning bandwidth of cortical neurons is invariant to both stimu-
lus contrast and temporal frequency (Sclar and Freeman, 1982;
Skottun etal., 1987; Anderson et al., 2000; Alitto and Usrey, 2004;
Moore et al., 2005; Finn et al., 2007; Preibe and Ferster, 2008).
Here, we show that the orientation-tuning bandwidth of LGN
ensemble activity is also invariant to age. We suggest that this
tight orientation tuning of ensemble activity observed in early
postnatal development plays a role in the early establishment of
orientation tuning in cortex. Given that LGN spikes are more
likely to evoke a postsynaptic spike in the cortex when they arrive
shortly after (<7 ms) a spike from another LGN neuron (Usrey et
al., 2000; Usrey and Alitto, 2015; Stanley et al., 2012; Kelly et al.,
2014), we suggest that the mature-like orientation tuning of LGN
ensemble activity seen in early development serves as a substrate
for Hebbian mechanisms to use in the establishment of the highly
precise patterns of geniculocortical connections observed in the
adult (Reid and Alonso, 1995; Alonso et al., 2001).
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